«Закрылки — это очень критично. Летная школа: что такое механизация крыла Для чего нужны крылья самолету

Механизация крыла

Выпущенные закрылки и предкрылки.

Выпущенные предкрылки.

Механиза́ция крыла́ - совокупность устройств на крыле летательного аппарата, предназначенных для регулирования его несущих свойств. Механизация включает в себя закрылки, предкрылки, интерцепторы, спойлеры, флапероны, активные системы управления пограничным слоем и т. д.

Закрылки

Закрылки - отклоняемые поверхности, симметрично расположенные на задней кромке крыла. Закрылки в убранном состоянии являются продолжением поверхности крыла, тогда как в выпущенном состоянии могут отходить от него с образованием щелей. Используются для улучшения несущей способности крыла во время взлёта, набора высоты, снижения и посадки, а также при полёте на малых скоростях. Существует большое число типов конструкции закрылков:

Принцип работы закрылков заключается в том, что при их выпуске увеличивается кривизна профиля и (в случае выдвижных закрылков , которые также называют закрылками Фаулера ) площадь поверхности крыла, следовательно, увеличивается и подъёмная сила . Возросшая подъёмная сила позволяет летательным аппаратам лететь без сваливания при меньшей скорости. Таким образом, выпуск закрылков является эффективным способом снизить взлётную и посадочную скорости. Второе следствие выпуска закрылков - это увеличение аэродинамического сопротивления . Если при посадке возросшее лобовое сопротивление способствует торможению самолета, то при взлёте дополнительное лобовое сопротивление отнимает часть тяги двигателей. Поэтому на взлёте закрылки выпускаются всегда на меньший угол, нежели при посадке. Третье следствие выпуска закрылков - продольная перебалансировка самолёта из-за возникновения дополнительного продольного момента. Это усложняет управление самолётом (на многих современных самолётах пикирующий момент при выпуске закрылков компенсируется перестановкой стабилизатора на некоторый отрицательный угол). Закрылки, образующие при выпуске профилированные щели, называют щелевыми . Закрылки могут состоять из нескольких секций, образуя несколько щелей (как правило, от одной до трёх).

К примеру, на отечественном Ту-154М применяются двухщелевые закрылки, а на Ту-154Б - трёхщелевые. Наличие щели позволяет потоку перетекать из области повышенного давления (нижняя поверхность крыла) в область пониженного давления (верхняя поверхность крыла). Щели спрофилированы так, чтобы вытекающая из них струя была направлена по касательной к верхней поверхности, а сечение щели должно плавно сужаться для увеличения скорости потока. Пройдя через щель, струя с высокой энергией взаимодействует с «вялым» пограничным слоем и препятствует образованию завихрений и отрыву потока. Это мероприятие и позволяет «отодвинуть» срыв потока на верхней поверхности крыла на бо́льшие углы атаки и бо́льшие значения подъемной силы.

Флапероны

Флапероны , или «зависающие элероны» - элероны , которые могут выполнять также функцию закрылков при их синфазном отклонении вниз. Широко применяются в сверхлёгких самолётах и радиоуправляемых авиамоделях при полётах на малых скоростях, а также на взлёте и посадке. Иногда применяются на более тяжелых самолётах (например, Су-27). Основное достоинство флаперонов - это простота реализации на базе уже имеющихся элеронов и сервоприводов .

Предкрылки

Предкрылки - отклоняемые поверхности, установленные на передней кромке крыла. При отклонении образуют щель, аналогичную таковой у щелевых закрылков. Предкрылки, не образующие щели, называются отклоняемыми носками. Как правило, предкрылки автоматически отклоняются одновременно с закрылками, но могут и управляться независимо.

В целом, эффект предкрылков заключается в увеличении допустимого угла атаки, то есть срыв потока с верхней поверхности крыла происходит при бо́льшем угле атаки.

Помимо простых, существуют так называемые адаптивные предкрылки . Адаптивные предкрылки автоматически отклоняются для обеспечения оптимальных аэродинамических характеристик крыла в течение всего полёта. Также обеспечивается управляемость по крену при больших углах атаки с помощью асинхронного управления адаптивными предкрылками.

Интерцепторы

Выпуск левого элерон-интерцептора при парировании правого крена

Интерцепторы (спойлеры) - отклоняемые или выпускаемые в поток поверхности на верхней поверхности крыла, которые увеличивают аэродинамическое сопротивление и уменьшают подъёмную силу. Поэтому интерцепторы также называют органами непосредственного управления подъёмной силой.

В зависимости от предназначения и площади поверхности консоли, расположения её на крыле и т. д. интерцепторы делят на:

Элерон-интерцепторы

Элерон-интерцепторы представляют собой дополнение к элеронам и используются в основном для управления по крену. Они отклоняются несимметрично. Например, на Ту-154 при отклонении левого элерона вверх на угол до 20°, элерон-интерцептор на этой же консоли автоматически отклоняется вверх на угол до 45°. В результате подъёмная сила на левой консоли крыла уменьшается, и самолёт кренится влево.

У некоторых самолетов элерон-интерцепторы могут являться главным (либо резервным) органом управления по крену .

Спойлеры

Выпущенные спойлеры

Спойлеры (многофункциональные интерцепторы) - гасители подъемной силы.

Симметричное задействование интерцепторов на обеих консолях крыла приводит к резкому уменьшению подъёмной силы и торможению самолёта. После выпуска самолёт балансируется на большем угле атаки, начинает тормозиться за счёт возросшего сопротивления и плавно снижаться. Возможно изменение вертикальной скорости без изменения угла тангажа . То есть при одновременном выпуске интерцепторы используются в качестве воздушных тормозов.

Интерцепторы также активно используются для гашения подъёмной силы после приземления или при прерванном взлёте и для увеличения сопротивления. Необходимо отметить, что они не столько гасят скорость непосредственно, сколько снижают подъёмную силу крыла, что приводит к увеличению нагрузки на колёса и улучшению сцепления колёс с поверхностью. Благодаря этому, после выпуска внутренних интерцепторов можно переходить к торможению с помощью колёс.

См. также

  • Роторный предкрылок - движитель на основе предкрылка
  • Вибрирующий предкрылок - движитель на основе предкрылка
  • Элероны - рули, управляющие креном самолёта.
  • Аэродинамика Боинг 737

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Механизация крыла" в других словарях:

    Комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным слоем на поверхности крыла и (или) изменении кривизны профиля. М. к.… … Энциклопедия техники

    Комплекс устройств, изменяющих подъёмную силу и лобовое сопротивление крыла летательного аппарата. М. к. уменьшает скорость посадки самолёта, а при взлёте облегчает его отрыв от поверхности земли. В зависимости от типа М. к. подъёмную… … Большая советская энциклопедия

    механизация крыла Энциклопедия «Авиация»

    механизация крыла - Рис. 1. Схема механизации передней части крыла. механизация крыла — комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным… … Энциклопедия «Авиация»

    механизация крыла - Рис. 1. Схема механизации передней части крыла. механизация крыла — комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным… … Энциклопедия «Авиация»

    механизация крыла - Рис. 1. Схема механизации передней части крыла. механизация крыла — комплекс устройств в передней и (или) задней частая крыла для изменения его аэродинамических характеристик. Работа всех элементов М. к. основана на управлении пограничным… … Энциклопедия «Авиация»

    Механизация крыла - устройства (предкрылки, закрылки. щитки и др.) для изменения аэродинамических характеристик крыла в целях уменьшения скорости посадки (отрыва), длины разбега (пробега), а также улучшения манёвренности ЛА в полёте и др … Словарь военных терминов

    Энциклопедия «Авиация»

    энергетическая механизация крыла - Рис. 1. Энергетическая механизация крыла. энергетическая механизация крыла — устройства для увеличения подъёмной силы крыла, принцип действия которых основан на использовании энергии двигателей летательного аппарата или дополнительных… … Энциклопедия «Авиация»

    Устройства для увеличения подъёмной силы крыла, принцип действия которых основан на использовании энергии двигателей ЛА или дополнительных источников мощности. Э. м. к. применяется для улучшения взлётно посадочных и манёвренных характеристик ЛА,… … Энциклопедия техники

Согласно определению, закрылком называется отклоняющаяся вниз или выдвигающаяся и одновременно отклоняющаяся задняя часть крыла. Поскольку добавить к этому нечего, сразу переходим к обсуждению использования закрылков в полете.

У курсантов, летающих в России, регулярно возникает вопрос: «Когда и на какой угол выпускать закрылки?». Рекомендации инструкторов на эту тему часто противоречат друг другу, как и «стандартные процедуры» больших авиакомпаний. Попытки найти истину в РЛЭ небольшого самолета обычно успеха не имеют, особенно если это самолет зарубежного производства.

Попробую внести некоторую ясность.

В западной летной школе существует единый подход к тому, как и когда выпускаются закрылки. Он выглядит следующим образом: закрылки выпускаются только в полетах с короткой полосы или мягкого грунта, а также при выполнении вынужденной посадки или посадки «из предосторожности». Нормальные взлет и посадка выполняются БЕЗ ЗАКРЫЛКОВ. Такова устоявшаяся практика и на этом построен летный экзамен.

Хочу особо подчеркнуть, что на Западе для малой авиации нормальным взлетом и посадкой (Exercise 16 и 18) считается работа с такой полосы, которыми в России располагают лишь крупные аэроузлы и военные аэродромы. Скажем, обучаясь в аэроклубе в Канаде, я выполнял полеты с полос длиной 7900 и 6200 футов международного аэропорта города Реджайны. Уверен, что ВПП многих российских аэроклубов и АУЦ в настоящее время далеки от этих характеристик. Поэтому большинство полетов в России можно классифицировать как полеты с коротких полос или с мягкого грунта, где выпуск закрылков полностью оправдан и прекрасно коррелирует со стандартными требованиями западной школы.

Для больших авиалайнеров (в силу их значительной массы и скорости) все взлеты и посадки являются «короткими», и они всегда пользуются механизацией. Но поскольку в больших авиакомпаниях принято самостоятельно разрабатывать собственные технологии работы экипажей, стандартные процедуры и т.п., нам не следует безоговорочно принимать их как руководство к действию.

Универсальный же подход состоит в том, что условием для выпуска закрылков является длина полосы или состояние ее покрытия. И если мы летаем с короткой или грунтовой ВПП, то закрылки надо обязательно выпускать. Остается вопрос «когда это делать?».

Однако, если вы летаете на низкоплане, особенно таком как Як-18Т со щитком ПОД фюзеляжем и высоко расположенным стабилизатором, данный эффект не будет действовать в полном объеме. Субъективно вам может казаться, что щиток также дает сильное кабрирование, требующее коррекции штурвалом «от себя», но на самом деле, самолет просто «вспухает» за счет резкого увеличения подъемной силы при быстром выпуске щитка с 0 градусов до 50 (!) в один прием. Уже через несколько секунд после этого он спокойно летит с довольно низко опущенным носом, что ставит под сомнение создание «сильного кабрирующего момента».

Еще меньше кабрирующий момент ожидается на самолетах-низкопланах с «T-tail», таких, например, как Diamond Katana DA-20. На них стабилизатор и руль высоты находятся существенно выше зоны влияния скоса потока.

Таким образом, если для высокопланов и некоторых бипланов можно с уверенностью утверждать, что выпуск закрылков всегда вызывает кабрирующий момент, то для низкопланов и, особенно, низкопланов с «T-tail» это будет не совсем верно. На таких самолетах выпуск закрылков вполне может приводить к пикирующему моменту.

ВАЖНО: остерегайтесь выпуска закрылков в разворотах, делайте это строго в горизонтальном полете. Опасность состоит в том, что если один из них выходит из строя или примерзает, то второй, действуя как элерон, создает дополнительную подъемную силу только на одном крыле. Возникший из-за этого крен может сложиться с креном в развороте, и тогда ситуация очень быстро станет критической. Вы можете так и не понять, что произошло, перевернувшись вверх колесами в непосредственной близости от земли. В горизонтальном полете крен, возникший от несимметричного выпуска закрылков, легче заметить, и если это произошло, то нужно как можно быстрее перевести их селектор на уборку. В случае, если один из них заклинил в промежуточном положении, нужно установить в это же положение и второй и больше не пользоваться закрылками до окончания полета.

Конечно, поскольку Як-18Т оборудован только одним щитком, его несимметричный выпуск технически не возможен. Но я бы рекомендовал придерживаться единого стереотипа поведения независимо от типа самолета. Тем более, что на этом самолете щиток имеет лишь два положения «убран» и «выпущен», и при выпуске он отклоняется сразу на большой угол. Это требует энергичных контрдействий штурвалом для предотвращения набора высоты. При этом ориентироваться приходится по положению капота-горизонта или по проекции ВПП в лобовом стекле, что делать в развороте значительно труднее, чем в горизонтальном полете.

Также ВАЖНО, что выпуск и уборку закрылков, по возможности, следует производить в несколько приемов. Если выпуск в один прием не является чем-то особенно опасным, а лишь приводит к нежелательному набору высоты (что особенно заметно на Яках), то быстрая уборка ведет к существенной просадке самолета. Если это произойдет у самой земли (например, при уходе на второй круг), последствия могут быть катастрофическими.

Конечно, закрылки, выпущенные на заходе на 30 или 40 градусов, при уходе на второй круг надо оперативно убрать до 20, чтобы снизить аэродинамическое сопротивление. Как упоминалось выше, в этом случае потеря подъемной силы будет несущественна. Но делать это все-таки нужно без паники. Дав взлетный режим, следует удостовериться, что самолет начал набирать скорость в горизонтальном полете. Только когда скорость достигнет хотя бы Vx, можно убирать закрылки одним движением до 20 градусов и приступать к набору высоты. В процессе набора высоты закрылки доубирают в два этапа: сначала до 10 градусов, а затем полностью.

При выполнении конвейеров на Як-18Т с короткой полосы у курсанта может сформироваться моторный рефлекс на уборку щитка после посадки (так было у меня). Это связано с необходимостью всегда быстро убирать щиток на пробегах и отрабатывается до автоматизма многократными повторениями. Однако в том случае, когда по каким-либо причинам инструктор дает курсанту команду на уход на второй круг с малой высоты, этот рефлекс может сослужить дурную службу. Данный тип самолета при уборке щитка просаживается на десятки метров (до 50!), что чревато столкновением с землей. Мой инструктор дважды ловил мою руку на кране уборки в таких ситуациях. Постарайтесь избежать моих ошибок и делайте небольшую паузу перед тем как дергать краны и селекторы закрылков в воздухе. Не спешите, выдохните и подумайте еще раз, все ли вы правильно делаете. Если вы уже установили взлетный режим, то самолет будет лететь и даже устойчиво набирать высоту с выпущенным щитком, так что времени на раздумья у вас достаточно. В данном конкретном случае надо сначала убрать шасси и лишь затем, набрав минимум 50 метров, убрать щиток.

Предварительные данные расшифровки речевого самописца лайнера Минобороны говорят о том, что самолёт потерял управление из-за проблем с закрылками и перешёл в критический угол атаки.

После того как спасателям удалось поднять со дна Чёрного моря речевой бортовой самописец с разбившегося Ту-154 Минобороны, эксперты смогли расшифровать запись, хранящуюся на нём. Плёнка, фиксировавшая переговоры экипажа и разговоры внутри кабины, оказалась не повреждена.

Разговор прерывается на том, что один из пилотов восклицает: "Закрылки, с*ка!" А затем звучит крик: "Командир, падаем!", - рассказал источник.

При расшифровке чёрных ящиков специалисты услышали характерный сигнал системы, который сопутствует превышению угла атаки. Эта система автоматически реагирует на критический угол атаки, - пояснил источник Лайфа.

Эксперт пояснил Лайфу, что только по обрывкам фраз членов экипажа делать окончательные выводы о причинах катастрофы пока преждевременно.

Это может быть субъективный взгляд со стороны экипажа, который, правда, подтверждает записанный звук автоматической речевой сигнализации, оповещающий экипаж о превышении угла атаки, - рассказывает эксперт.

По его мнению, у экипажа во время набора высоты возникли какие-то проблемы со взлётно-посадочной механизацией. Закрылки управляют движением самолёта по вертикали на малых скоростях. В выпущенном состоянии они увеличивают подъёмную силу крыла. Положение закрылков важно как при взлёте, так и при посадке. В чём именно выражались проблемы у Ту-154, пока сказать нельзя. Возможно, это была ошибка пилотов при управлении механизацией, а может быть, и несинхронная уборка механизации.

Теперь в этом нужно разбираться, - утверждает источник Лайфа в комиссии по расследованию катастрофы лайнера Минобороны. - Второй самописец, параметрический, пока не доставлен в Центральный научно-исследовательский институт Минобороны, и пока не известно, когда начнётся его расшифровка.

Как пояснил Лайфу вице-президент Федерации любителей авиации заслуженный лётчик-испытатель СССР Виктор Заболотский, в случае если у самолёта возникают проблемы с закрылками, он может стать неуправляемым.

Получается, у одного крыла подъёмная сила большая, а у второго маленькая, естественно, самолёт будет переворачивать, - отметил он. - Если закрылки не убираются или убираются неравномерно, тогда возникают очень мощные кренящие моменты и управлять самолётом очень тяжело.

Летчик-испытатель Герой России Магомед Толбоев также считает, что неполадки с закрылками не могут произойти просто так.

Это отказ авиационной техники. Неуборка закрылка или уборка только с одной стороны приводит к разрушению полукрыла самолета. С той стороны, откуда они были выпущены, происходит сваливание самолёта и потеря скорости, - пояснил Толбоев. - Всё это происходит очень быстро, и многие лётчики просто не знают, что делать в такой ситуации. Это касается не только военных летчиков, но и гражданских.

По словам Толбоева, при расшифровке чёрных ящиков специалисты услышали характерный сигнал системы, который сопутствует превышению угла атаки. Эта система реагирует автоматически. Толбоев говорит, что срабатывание этого датчика - серьёзный сигнал для командира экипажа.

Он срабатывает при потере скорости или когда крыло находится на полном нагружении и больше самолёт поднять не может, - пояснил эксперт.

Источник Лайфа в Минобороны рассказывает, что расшифровка речевого самописца подтверждает предварительные выводы инженеров Научно-исследовательского центра эксплуатации и ремонта авиатехники (НИЦ ЭРАТ) Минобороны о причинах катастрофы.

Катастрофа произошла, когда пилоты убирали механизацию, а самолёт шёл с большим углом тангажа. В итоге произошло его сваливание с эшелона во время манёвра вправо, - говорит собеседник Лайфа.

Один из пилотов Росавиации подтверждает версию военных авиационных инженеров.

Причиной падения Ту-154 на этой временной отметке полёта может служить только рассинхронизация уборки закрылков, - рассказал Лайфу авиатор.

По его словам, на второй минуте полёта убираются закрылки - части крыла, управляющие поворотами. На этом этапе может подвести автоматика, тогда один из закрылков останется поднятым.

Это нарушает аэродинамику так, что самолёт начинает закручивать в сторону крыла с неубранным закрылком. Остановить эту ситуацию можно было при наличии запаса высоты, но на момент трагедии у пилотов Ту-154 его ещё не было, - рассказал Лайфу пилот.

Авиационный эксперт Сергей Крутоусов, считает, что необходимо дождаться полной расшифровки как речевого, так и параметрического самописца Ту-154, фиксирующего работу узлов и агрегатов самолёта.

Сергей Крутоусов не исключил и пресловутый человеческий фактор: при наборе высоты пилоты не смогли рассчитать правильный угол тангажа.

При пилотировании при наборе высоты в штурвальном режиме основная трудность состоит именно в выдерживании скорости, что является стабильностью при пилотировании и удерживании лайнера по тангажу при скорости набора высоты 500–550 км в час, - говорит эксперт Сергей Крутоусов.

По его словам, при большом положительном угле тангажа, когда у лайнера задран нос, он мог выйти на критические показатели, потерять подъёмную силу и свалиться с эшелона.

Эксперт из Росавиации говорит, что предварительное исследование записи речевого самописца выводит в приоритет версии о технической неисправности лайнера и ошибке пилотов. Впрочем, отрабатываются и другие версии. Например, попадание в двигатель посторонних предметов (к примеру, птицы), некачественное топливо, повлёкшее потерю мощности и отказ работы двигателей.

Следователи ГВСУ, которые ведут расследование катастрофы, также склоняются к техническому фактору.

Вероятно, причиной катастрофы Ту-154 при наборе высоты мог стать отказ гидросистемы самолёта, что привело к полной утрате способности экипажа управлять машиной. Причиной отказа гидросистемы самолёта могло стать короткое замыкание в одном из двигателей лайнера, - рассказал Лайфу источник в ГВСУ.

Подтвердить или опровергнуть эту версию в ближайшее время смогут специалисты.

Катастрофа с Ту-154 произошла 25 декабря 2016 года в 5:40 утра по московскому времени в 1,7 километра от побережья Сочи. Борт российского Минобороны летел в сирийский Хмеймим с аэродрома Чкаловский, в аэропорту Сочи же он дозаправлялся. На борту лайнера находилось 92 человека. Через две минуты после отрыва от полосы, не успев набрать высоту, самолёт пропал с экранов радаров. Никаких сигналов тревоги экипаж не подавал.

Спасатели уже обнаружили хвостовую часть Ту-154 с двигателями, а также бортовые самописцы и 14 тел погибших.

На современных самолетах с целью получения высоких летно-тактических характеристик, в частности для достижения больших скоростей полета, значительно уменьшены и площадь крыла и его удлинение. А это отрицательно сказывается на аэродинамическом качестве самолета и особенно на взлетно-посадочных характеристиках.

Для удержания самолета в воздухе в прямолинейном полете с постоянной скоростью необходимо, чтобы подъемная сила была равна весу самолета - Y = G . Но так как

(30)

Из формулы (30) следует, что для удержания самолета в воздухе на наименьшей скорости (при посадке, например) нужно, чтобы коэффициент подъемной силы С y был наибольшим. Однако С y можно увеличивать путем увеличения угла атаки только до α крит. Увеличение угла атаки больше критического приводит к срыву потока на верхней поверхности крыла и к резкому уменьшению С y , что недопустимо. Следовательно, для обеспечения равенства подъемной силы и веса самолета необходимо увеличить скорость полета .

Вследствие указанных причин посадочные скорости современных самолетов довольно велики. Это сильно усложняет взлет и посадку и увеличивает длину пробега самолета.

С целью улучшения взлетно-посадочных характеристик и обеспечения безопасности на взлете и особенно посадке необходимо посадочную скорость по возможности уменьшить. Для этого нужно, чтобы С y был возможно больше. Однако профили крыла, имеющие большое Су макс, обладают, как правило, большими значениями лобового сопротивления Сх мин , так как у них большие относительные толщина и кривизна. А увеличение Сх. мин , препятствует увеличению максимальной скорости полета. Изготовить профиль крыла, удовлетворяющий одновременно двум требованиям: получению больших максимальных скоростей и малых посадочных - практически невозможно.

Поэтому при проектировании профилей крыла самолета стремятся в первую очередь обеспечить максимальную скорость, а для уменьшения посадочной скорости применяют на крыльях специальные устройства, называемые механизацией крыла.

Применяя механизированное крыло, значительно увеличивают величину Су макс, что дает возможность уменьшить посадочную скорость и длину пробега самолета после посадки, уменьшить скорость самолета в момент отрыва и сократить длину разбега при взлете. Применение механизации улучшает устойчивость и управляемость самолета на больших углах атаки. Кроме того, уменьшение скорости при отрыве на взлете и при посадке увеличивает безопасность их выполнения и сокращает расходы на строительство взлетно-посадочных полос.

Итак, механизация крыла служит для улучшения взлетно-посадочных характеристик самолета путем увеличения максимального значения коэффициента подъемной силы крыла Cу макс .



Суть механизации крыла состоит в том, что с помощью специальных приспособлений увеличивается кривизна профиля (в некоторых случаях и площадь крыла), вследствие чего изменяется картина обтекания. В результате получается увеличение максимального значения коэффициента подъемной силы.

Эти приспособления, как правило, выполняются управляемыми в полете: при полете на малых углах атаки (при больших скоростях полета) они не используются, а применяются лишь на взлете, на посадке, когда увеличение угла атаки не обеспечивает получения нужной величины подъемной силы.

Существуют следующие виды механизации крыла: щитки, закрылки, предкрылки, отклоняемые носки крыла, управление пограничным слоем, реактивные закрылки .

Щиток представляет собой отклоняющуюся поверхность, которая в убранном положении примыкает к нижней, задней поверхности крыла. Щиток является одним из самых простых и наиболее распространенных средств повышения Су макс.

Увеличение Су макс при отклонении щитка объясняется изменением формы профиля крыла, которое можно условно свести к увеличению эффективного угла атаки и вогнутости (кривизны) профиля.

При отклонении щитка образуется вихревая зона подсасывания между крылом и щитком. Пониженное давление в этой зоне распространяется частично на верхнюю поверхность профиля у задней кромки и вызывает отсос пограничного слоя с поверхности, лежащей выше по течению. За счет отсасывающего действия щитка предотвращается срыв потока на больших углах атаки, скорость потока над крылом возрастает, а давление уменьшается. Кроме того, отклонение щитка повышает давление под крылом за счет увеличения эффективной кривизны профиля и эффективного угла атаки α эф .

Благодаря этому выпуск щитков увеличивает разность относительных давлений над крылом и под крылом, а следовательно, и коэффициент подъемной силы Су .

На рис. 42 показан график зависимости С y от угла атаки для крыла с различным положением щитка: убранное, взлетное φ щ = 15°, посадочное φ щ = 40°.

При отклонении щитка вся кривая Су щ = f(α) смещается вверх почти эквидистантно кривой Су = f (α) основного профиля.

Из графика видно, что при отклонении щитка в посадочное положение (φ щ = 40°) приращение Су составляет 50-60%, а критический угол атаки при этом уменьшается на 1-3°.

Для увеличения эффективности щитка конструктивно его выполняют таким образом, что при отклонении он одновременно смещается назад, к задней кромке крыла. Тем самым увеличиваются эффективность отсоса пограничного слоя с верхней поверхности крыла и протяженность зоны повышенного давления под крылом.

При отклонении щитка одновременно с увеличением коэффициента подъемной силы увеличивается и коэффициент лобового сопротивления, аэродинамическое качество крыла при этом уменьшается.

Закрылок . Закрылок представляет собой отклоняющуюся часть задней кромки крыла либо поверхность, выдвигаемую (с одновременным отклонением вниз) назад из-под крыла. По конструкции закрылки делятся на простые (нещелевые), однощелевые и многощелевые .

Рис. 39. Профиль крыла со щитком, смещающимся назад

Рис. 40. Закрылки: а - нещелевой; б - щелевой

Нещелевой закрылок увеличивает коэффициент подъемной силы С y за счет увеличения кривизны профиля. При наличии между носком закрылка и крылом специально спрофилированной щели эффективность закрылка увеличивается, так как воздух, проходящий с большой скоростью через сужающуюся щель, препятствует набуханию и срыву пограничного слоя. Для дальнейшего увеличения эффективности закрылков иногда применяют двухщелевые закрылки, которые дают прирост коэффициента подъемной силы С y профиля до 80%.

Увеличение Су макс крыла при выпуске закрылков или щитков зависит от ряда факторов: их относительных размеров, угла отклонения, угла стреловидности крыла. На стреловидных крыльях эффективность механизации, как правило, меньше, чем у прямых крыльев. Отклонение закрылков, так же как и щитков, сопровождается не только повышением С y , но в еще большей степени приростом С x , поэтому аэродинамическое качество при выпущенной механизации уменьшается.

Критический угол атаки при выпущенных закрылках незначительно уменьшается, что позволяет получить С умакс при меньшем подъеме носа самолета (рис. 37).

Рис. 41. Профиль крыла с щитком

Рис. 42. Влияние выпуска щитков на кривую Су=f()

Рис. 43. Поляра самолета с убранными и выпущенными щитками

Предкрылок представляет собой небольшое крылышко, находящееся впереди крыла (рис. 44).

Предкрылки бывают фиксированные и автоматические.

Фиксированные предкрылки на специальных стойках постоянно закреплены на некотором удалении от носка профиля крыла. Автоматические предкрылки при полете на малых углах атаки плотно прижаты к крылу воздушным потоком. При полете на больших углах атаки происходит изменение картины распределения давления по профилю, в результате чего предкрылок как бы отсасывается. Происходит автоматическое выдвижение предкрылка (рис. 45).

При выдвинутом предкрылке между крылом и предкрылком образуется суживающаяся щель. Увеличиваются скорость воздуха, проходящего через эту щель, и его кинетическая энергия. Щель между предкрылком и крылом спрофилирована таким образом, что воздушный поток, выходя из щели, с большой скоростью направляется вдоль верхней поверхности крыла. Вследствие этого скорость пограничного слоя увеличивается, он становится более устойчивым на больших углах атаки и отрыв его отодвигается на большие углы атаки. Критический угол атаки профиля при этом значительно увеличивается (на 10°-15°), а Cу макс увеличивается в среднем на 50% (рис. 46).

Обычно предкрылки устанавливаются не по всему размаху, а только на его концах. Это объясняется тем, что, кроме увеличения коэффициента подъемной силы, увеличивается эффективность элеронов, а это улучшает поперечную устойчивость и управляемость. Установка предкрылка по всему размаху значительно увеличила бы критический угол атаки крыла в целом, и для его реализации на посадке пришлось бы стойки основных ног шасси делать очень высокими.

Рис. 44. Предкрылок

Рис. 45. Принцип действия автоматического предкрылка:

а - малые углы атаки; б – большие углы атаки

Фиксированные предкрылки устанавливаются, как правило, на нескоростных самолетах, так как такие предкрылки значительно увеличивают лобовое сопротивление, что является помехой для достижения больших скоростей полета.

Отклоняемый носок (рис. 47) применяется на крыльях с тонким профилем и острой передней кромкой для предотвращения срыва потока за передней кромкой на больших углах атаки.

Изменяя угол наклона подвижного носка, можно для любого угла атаки подобрать такое положение, когда обтекание профиля будет безотрывным. Это позволит улучшить аэродинамические характеристики тонких крыльев на больших углах атаки. Аэродинамическое качество при этом может возрастать.

Искривление профиля отклонением носка повышает Су макс крыла без существенного изменения критического угла атаки.

Рис. 46. Кривая Су =f (α) для крыла с предкрылками

Рис. 47. Отклоняемый носок крыла

Управление пограничным слоем (рис. 48) является одним из наиболее эффективных видов механизации крыла и сводится к тому, что пограничный слой либо отсасывается внутрь крыла, либо сдувается с его верхней поверхности.

Для отсоса пограничного слоя или для его сдувания применяют специальные вентиляторы либо используют компрессоры самолетных газотурбинных двигателей.

Отсасывание заторможенных частиц из пограничного слоя внутрь крыла уменьшает толщину слоя, увеличивает его скорость вблизи поверхности крыла и способствует безотрывному обтеканию верхней поверхности крыла на больших углах атаки.

Сдувание пограничного слоя увеличивает скорость движения частиц воздуха в пограничном слое, тем самым предотвращает срыв потока.

Управление пограничным слоем дает хорошие результаты в сочетании с щитками или закрылками.

Рис. 48. Управление пограничным слоем

Рис. 49. Реактивный закрылок


Реактивный закрылок (рис. 49) представляет струю газов, вытекающую с большой скоростью под некоторым углом вниз из специальной щели, расположенной вблизи задней кромки крыла. При этом струя газа воздействует на поток, обтекающий крыло, подобно отклоненному закрылку, вследствие чего перед реактивным закрылком (под крылом) давление повышается, а позади его понижается, вызывая увеличение скорости движения потока над крылом. Кроме того образуется реактивная сила Р , создаваемая вытекающей струёй.

Эффективность действия реактивного закрылка зависит от угла атаки крыла, угла выхода струи и величины силы тяги Р . Их используют для тонких, стреловидных крыльев малого удлинение Реактивный закрылок позволяет увеличить коэффициент подъемной силы Cу макс в 5-10 раз . Для создания струи используются газы, выходящие из турбореактивного двигателя.

Крыло самолета является одной из основных составляющих его частей. Именно благодаря ему самолет летает и совершает различные маневры в воздухе. Оно служит также для размещения в нем топливных баков и шасси. К крылу подвешиваются авиамоторы и боевое вооружение авиалайнеров. Однако основная задача этой части самолета – создание подъемной силы на всех этапах полета.

Механизация крыла Боинг-727

Используемые в современной авиации виды крыльев самолета, бывают прямоугольными, трапециевидными, стреловидными и треугольными. Реже встречаются конструкции с переменной и обратной стреловидностью.

Прямоугольные крылья позволяют создавать наибольшую подъемную силу. Они более устойчивы и хорошо управляются. Их целесообразно использовать на скоростях меньше звука. Они обеспечивают лучшие параметры самолета при взлете и посадке, а также при выполнении маневров. Однако такие конструкции создают большое сопротивление при больших скоростях полета и они более тяжелые.

Трапециевидные крылья менее тяжелые, чем прямоугольные, но они более жесткие. Чем больше суживается такое крыло, тем оно легче и тем жестче оно должно быть. Трапециевидные крылья тоже с успехом используются на дозвуковых самолетах.

Стреловидные крылья применяются для полета на больших дозвуковых и сверхзвуковых скоростях. По сравнению с прямым крылом, у стреловидного меньше несущие способности при одинаковых скоростях полета. Это снижает устойчивость и управляемость самолетов. Чтобы компенсировать этот недостаток, на поверхностях стреловидных крыльев вдоль набегающего потока иногда устанавливают дополнительно небольшие вертикальные плоскости и делают пилообразые уступы на передних кромках. Любой летательный аппарат со стреловидным крылом становится более устойчивым и управляемым, по мере увеличения его скорости.

В то же время, повышенная поперечная устойчивость снижает маневренные возможности самолета при больших скоростях.

Треугольные крылья. При равных с другими крыльями (например, стреловидными) площади крыла и нагрузках, их конструкция легче и более жесткая. Меньший вес объясняется меньшим значением изгибающих и осевых сил при большем поперечном сечении крыла. Повышенная жесткость такого крыла обусловлена большими, по сравнению с другими крыльями, моментами инерции, что тоже объясняется большим поперечным сечением крыла.

Такие крылья имеют меньшее лобовое сопротивление при переходе к сверхзвуковой скорости. Поэтому они применяются преимущественно на сверхзвуковых самолетах.

Большее поперечное сечение треугольного крыла позволяет размещать в крыле вместительные внутренние объемы. Однако конструкция треугольного крыла, по своим аэродинамическим характеристикам, создает меньшую подъемную силу, а также ограничивает использование средств механизации крыла, что чрезвычайно важно на малых скоростях полета.

Крыло самолета - сложная инженерная конструкция, состоящая из множества деталей. Для создания силы, способной поднять самолет в воздух, крылу придается аэродинамическая форма.

В разрезе классическое крыло напоминает вытянутую каплю с плоской нижней частью. Благодаря такой форме, набегающий во время полета аэроплана воздушный поток, сжимается в нижней поверхности крыла, а в верхней образуется разреженное пространство. Сформировавшиеся при этом силы начинают толкать крыло в сторону разреженного пространства, то есть вверх. Таким образом, создается подъемная сила.

Но эти условия полета формируются только при достаточной скорости. Поэтому все самолеты (кроме самолетов с вертикальным взлетом) сначала разгоняются. Им нужно набрать определенную скорость, чтобы оторваться от взлетной полосы и начать набор высоты. Это так называемая скорость отрыва. Она для каждого самолета своя, и даже для одного и того же самолета, но с разной взлетной массой, она тоже будет отличаться. И только после набора этой скорости, крыло начинает поддерживать самолет и не дает ему упасть.

На этапе разгона и набора высоты, для создания большей силы подъема, крыло должно иметь, как можно большую площадь.

Также большая площадь необходима для снижения и посадки аэроплана. Однако в прямолинейном полете, желательно чтобы площадь крыла была как можно меньше с целью создания наименьшего сопротивления. Все эти противоречивые требования «уживаются» в конструкции крыла при помощи специальных механических устройств.

Механизация крыла самолета подразделяется на механические устройства, расположенные на задней и передней кромках крыла.

Основное предназначение этих устройств – управление подъемной силой и сопротивлением самолета, преимущественно когда самолет взлетает или садится. Средства механизации крыла должны отвечать довольно жестким требованиям, и, в первую очередь, к ним относятся слаженность действия механизмов и безотказность их работы. Механизация крыла самолета конструкция и назначение отдельных его составляющих частей представлены ниже.

Механизация крыла на примере Боинг-737

Механизмы задней кромки крыла

При взлете и посадке самолета, для увеличения площади крыла и изменения его аэродинамических характеристик, применяются щитки и закрылки .

Они представляют собой выдвижные или поворотные плоскости. Обыкновенные щитки просто отклоняются вниз при помощи поворотного механизма. Выдвижные щитки, вначале выдвигаются назад за плоскость крыла, а затем наклоняются вниз. Закрылки подразделяются на обыкновенные и щелевые.

Обыкновенные закрылки тоже просто отклоняются вниз. Обыкновенные щитки и закрылки при отклонениях не имеют зазора между крылом. Щелевые закрылки в рабочем положении образуют зазор между своим корпусом и крылом. За счет этого зазора, области низкого и высокого давления в верхней и нижней поверхности крыла сообщаются между собой. Это способствует равномерному обтеканию крыла воздухом, предотвращает срывы потока и падение подъемной силы.

Выпущенные закрылки (Фаулера) самолета ТУ-154

Щелевые закрылки, так же как и крыло подвергаются скоростному напору воздуха и поэтому имеют аэродинамический профиль.

Они подразделяются на однощелевые и многощелевые. Однощелевые закрылки представляют собой простую однопрофильную конструкцию и просто отклоняются вниз, или выдвигаются назад из крыла, а затем отклоняются вниз.

Многощелевые закрылки имеют сложную многоступенчатую многопрофильную (до 3-х профилей) конструкцию с механизмом выдвижения из крыла. Каждый профиль многоступенчатой конструкции отклоняется на свой угол. При опускании закрылков и щитков изменяется аэродинамика крыла, а при их выдвижении увеличивается его площадь. Все эти действия способствуют увеличению подъемной силы крыла.

Простой (поворотный) закрылок

Механизмы передней кромки крыла

В качестве механизмов передней кромки крыла используются предкрылки и отклоняемые носки крыла.

Предкрылки наиболее сложные по конструкции устройства. Они представляют собой выдвижные механизмы аэродинамического профиля, установленные в передней части крыла. Их назначение улучшать летные возможности самолета на малых скоростях. При взлете их применение увеличивает угол набора высоты, что увеличивает крутизну взлета самолета и его быстрый выход на заданную высоту полета.

Обычный щелевой предкрылок в выпущенном состоянии

После выдвижения предкрылков вперед и вниз, образуется зазор, который, как и в случае с закрылками, открывает проход для набегающего потока воздуха с нижней кромки крыла к верхней его поверхности, что предотвращает срыв потока и повышает устойчивость полета самолета. Конструкция механизмов предкрылков обладает большой массой.

К основным недостаткам предкрылков следует отнести то, что в полете их деформация отличается от деформации основного крыла, что ухудшает аэродинамическое качество крыла в целом.

К разновидностям предкрылков относятся Щитки Крюгера, выполненные в виде отклоняющихся вперед и вниз плоскостей. Их применяют вместе с предкрылками на стреловидных крыльях. Они могут использоваться только до определенного угла подъема самолета. При его превышении происходит потеря управляемости.

Отклоняемые носки крыла. Применяются на самолетах с тонким крылом, где невозможно разместить механизмы предкрылков. Назначение их такое же, как и предыдущих механизмов – понизить вероятность потери управления при малых скоростях полета самолета и увеличить подъемную силу крыла.

К средствам механизации относятся также устройства, уменьшающие подъемную силу (тормозные щитки ) и интерцепторы . Конструктивно они представляют собой профилированные плоскости. Располагаются в верхней части крыла перед закрылками. Если самолету нужно снизить скорость, они поднимаются вверх, и создают дополнительное сопротивление.

В убранном положении они спрятаны в крыло. Тормозные щитки отклоняются вверх синхронно, а интерцепторы используются в качестве органов управления креном самолета, поэтому они отклоняются только с той стороны крыла, в сторону которой направлен крен. Для повышения управляемости интерцепторы располагаются как можно дальше от оси самолета.

Механизация Боинг-747. Трехщелевые закрылки Фаулера, предкрылки Крюгера (ближе к фюзеляжу), обычные предкрылки (дальше).

Резюме

Крыло самолета постоянно совершенствуется. Создаются новые материалы, более легкие, теплостойкие, с новыми прочностными характеристиками. Они в состоянии будут выдержать нагрузки недоступные «старым» материалам. Конструкторы при разработке этих тяжелых конструкций получили на вооружение компьютерную технику. Все это позволяет создавать совершенно новые модели авиационных крыльев, с новыми, недостижимыми ранее характеристиками. Оснащенные такими крыльями летательные аппараты будут способны летать еще выше и еще быстрее, станут намного маневренней современных машин. Так, развитие крыла будет способствовать развитию авиации в целом.

Вконтакте



Похожие публикации